Dopamine modulation of spike dynamics in bursting neurons.

نویسندگان

  • Attila Szücs
  • Henry D I Abarbanel
  • Michail I Rabinovich
  • Allen I Selverston
چکیده

The pyloric network of the lobster stomatogastric ganglion is a prime example of an oscillatory neural circuit. In our previous study on the firing patterns of pyloric neurons we observed characteristic temporal structures termed 'interspike interval (ISI) signatures' which were found to depend on the synaptic connectivity of the network. Dopamine, a well-known modulator of the pyloric network, is known to affect inhibitory synapses so it might also tune the fine temporal structure of intraburst spikes, a phenomenon not previously investigated. In the recent work we study the DA modulation of ISI patterns of two identified pyloric neurons in normal conditions and after blocking their glutamatergic synaptic connections. Dopamine (10-50 microM) strongly regularizes the firing of the lateral pyloric (LP) and pyloric dilator (PD) neurons by increasing the reliability of recurrent spike patterns. The most dramatic effect is observed in the LP, where precisely replicated spike multiplets appear in a normally 'noisy' neuron. The DA-induced regularization of intraburst spike patterns requires functional glutamatergic inputs to the LP neuron and this effect cannot be mimicked by simple intracellular depolarization. Inhibitory synaptic inputs arriving before the bursts are important factors in shaping the intraburst spike dynamics of both the PD and the LP neurons. Our data reveal a novel aspect of chemical neuromodulation in oscillatory neural networks. This effect sets in at concentrations lower than those affecting the overall burst pattern of the network. The sensitivity of intraburst spike dynamics to preceding synaptic inputs also suggests a novel method of temporal coding in neural bursters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical coupling between model midbrain dopamine neurons: effects on firing pattern and synchrony.

The role of gap junctions between midbrain dopamine (DA) neurons in mechanisms of firing pattern generation and synchronization has not been well characterized experimentally. We modified a multi-compartment model of DA neuron by adding a spike-generating mechanism and electrically coupling the dendrites of two such neurons through gap junctions. The burst-generating mechanism in the model neur...

متن کامل

Title: An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo

An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. A stylized, symmetric, compartmental model of a dopamine neuron in vivo shows how rate and pattern can be modulated either concurrently or differentially. If two or more parameters in the model are varied concurrently, the baseline firing rate and the exten...

متن کامل

Slow oscillatory firing: a major firing pattern of dopamine neurons in the ventral tegmental area.

Using spectral analysis and in vivo single-unit recording in rats, the present study revealed a pronounced slow oscillation (SO) in the firing activity of about half the dopamine (DA) neurons recorded in the ventral tegmental area. DA neurons in this group tended to fire repetitive spike clusters, making them appear to be rhythmic bursting cells. However, only some of these burst-like events me...

متن کامل

Dopaminergic modulation of spinal neuronal excitability.

It is well recognized that dopamine (DA) can modulate spinal networks and reflexes. DA fibers and receptors are present in the spinal cord, and evidence for DA release within the spinal cord has been published. A critical gap is the lack of data regarding dopaminergic modulation of intrinsic and synaptic properties of motoneurons and ventral interneurons in the mammalian spinal cord. In this pa...

متن کامل

Neural dynamics in cortex-striatum co-cultures--II. Spatiotemporal characteristics of neuronal activity.

Neural dynamics in organotypic cortex-striatum co-cultures grown for three to six weeks under conditions of dopamine deficiency are described. Single neuron activities were recorded intra- and extracellularly, and spatiotemporal spreading of population activity was mapped using voltage-sensitive dyes. The temporal properties of spike firing were characterized by interspike interval histograms, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European journal of neuroscience

دوره 21 3  شماره 

صفحات  -

تاریخ انتشار 2005